Project Title	Funding	Strategic Plan Objective	Institution	
Modeling and pharmacologic treatment of autism spectrum disorders in Drosophila	\$127,500	Q4.S.B Albert Einstein College of Medicine of		
Identifying genetic modifiers of rett syndrome in the mouse	\$30,000	Q4.S.B	Baylor College of Medicine	
Characterization of autism susceptibility genes on chromosome 15q11-13	\$47,606	Q4.S.B	Beth Israel Deaconess Medical Center	
Neurobiological mechanism of 15q11-13 duplication autism spectrum disorder	\$304,500	Q4.S.B	Beth Israel Deaconess Medical Center	
Interaction between MEF2 and MECP2 in the pathogenesis of autism spectrum disorders - 1	\$0	Q4.S.B	Burnham Institute	
Interaction between MEF2 and MECP2 in the pathogenesis of autism spectrum disorders -2	\$0	Q4.S.B	Burnham Institute	
Novel probiotic therapies for autism	\$570,145	Q4.S.B	California Institute of Technology	
Analysis of cortical circuits related to ASD gene candidates	\$0	Q4.S.B	Cold Spring Harbor Laboratory	
Novel models to define the genetic basis of autism	\$289,633	Q4.S.B	Cold Spring Harbor Laboratory	
Systematic analysis of neural circuitry in mouse models of autism	\$149,973	Q4.S.B	Cold Spring Harbor Laboratory	
16p11.2: defining the gene(s) responsible	\$175,000	Q4.S.B	Cold Spring Harbor Laboratory	
Investigating the effects of chromosome 22q11.2 deletions	\$150,000	Q4.S.B	Columbia University	
Genomic imbalances at the 22q11 locus and predisposition to autism	\$400,000	Q4.S.B	Columbia University	
Functional study of synaptic scaffold protein SHANK3 and autism mouse model	\$150,000	Q4.S.B	Duke University	
Neurogenetic model of social behavior heterogeneity in autism spectrum disorders	\$795,188	Q4.S.B	Duke University	
Role of UBE3A in neocortical plasticity and function	\$490,000	Q4.S.B	Duke University	
Neural mechanisms of social cognition and bonding	\$0	Q4.S.B	Emory University	
Genomic resources for identifying genes regulating social behavior	\$60,000	Q4.S.B	Emory University	
Central vasopressin receptors and affiliation	\$32,896	Q4.S.B	Emory University	
Central vasopressin receptors and affiliation	\$364,425	Q4.S.B	Emory University	
Characterization of the transcriptome in an emerging model for social behavior	\$426,250	Q4.S.B	Emory University	
Neural mechanisms of social cognition and bonding	\$43,862	Q4.S.B	Emory University	
Vasopressin receptors and social attachment	\$121,500	Q4.S.B	Emory University	
The role of SHANK3 in the etiology of autism spectrum disorder	\$28,000	Q4.S.B	Johns Hopkins University	
Dynamic regulation of Shank3 and ASD	\$300,000	Q4.S.B	Johns Hopkins University	
Investigation of the role of MET kinase in autism	\$366,308	Q4.S.B	Johns Hopkins University School of Medicine	

Project Title	Funding	Strategic Plan Objective	Institution	
Control of synaptic protein synthesis in the pathogenesis and therapy of autism	\$155,063	Q4.S.B	Massachusetts General Hospital	
Development of a high-content neuronal assay to screen therapeutics for the treatment of cognitive dysfunction in autism spectrum disorders	\$0	Q4.S.B	Massachusetts Institute of Technology	
Neurobiology of mouse models for human chr 16p11.2 microdeletion and fragile X	\$210,000	Q4.S.B	Massachusetts Institute of Technology	
Synaptic and circuitry mechanisms of repetitive behaviors in autism	\$400,000	Q4.S.B	Massachusetts Institute of Technology	
Mice lacking Shank postsynaptic scaffolds as an animal model of autism	\$128,445	Q4.S.B	Massachusetts Institute of Technology	
Neural and cognitive mechanisms of autism	\$375,000	Q4.S.B	Massachusetts Institute of Technology	
Dissecting the circuitry basis of autistic-like behaviors in mice	\$175,000	Q4.S.B	Massachusetts Institute of Technology	
Using Drosophila to model the synaptic function of the autism-linked NHE9	\$150,000	Q4.S.B	Massachusetts Institute of Technology	
Genetic models of serotonin transporter regulation linked to mental disorders	\$184,375	Q4.S.B	Medical University of South Carolina	
A preclinical model for determining the role of AVPR1A in autism spectrum disorders	\$0	Q4.S.B	Mount Sinai School of Medicine	
The role of SHANK3 in autism spectrum disorders	\$360,000	Q4.S.B	Mount Sinai School of Medicine	
Animal models of neuropsychiatric disorders	\$1,769,941	Q4.S.B	National Institutes of Health	
Regulation of gene expression in the brain	\$2,086,763	Q4.S.B	National Institutes of Health	
Synaptic plasticity, memory and social behavior	\$52,154	Q4.S.B	New York University	
Micro-RNA regulation in pluripotent stem cells	\$19,189	Q4.S.B	Southwest Foundation For Biomedical Research	
Optimization of methods for production of both ICSI- and SCNT derived baboon embryonic stem cells	\$260,102	Q4.S.B	Southwest Foundation For Biomedical Research	
Methods for production of ICSI and SCNT derived macaque stem cells	\$19,188	Q4.S.B	Southwest Foundation For Biomedical Research	
Role of L-type calcium channels in hippocampal neuronal network activity	\$32,741	Q4.S.B	Stanford University	
Using induced pluripotent stem cells to identify cellular phenotypes of autism	\$800,000	Q4.S.B	Stanford University	
Identification of autism genes that regulate synaptic Nrx/Nlg signaling complexes	\$200,000	Q4.S.B	Stanford University	
Synaptic deficits of iPS cell-derived neurons from patients with autism	\$86,588	Q4.S.B	Stanford University	
Exploring the neuronal phenotype of autism spectrum disorders using induced pluripotent stem cells	\$241,503	Q4.S.B	Stanford University	
Using iPS cells to study genetically defined forms with autism	\$200,000	Q4.S.B	Stanford University	

Project Title	Funding	Strategic Plan Objective	Institution	
Function and dysfunction of neuroligins	\$374,383	Q4.S.B	Stanford University	
Patient iPS cells with copy number variations to model neuropsychiatric disorders	\$207,388	Q4.S.B	The Hospital for Sick Children	
Serotonin, autism, and investigating cell types for CNS disorders	\$90,000	Q4.S.B	The Rockefeller University	
Design & synthesis of novel CNS-active oxytocin and vasopressin receptor ligands	\$560,535	Q4.Other	The Scripps Research Institute	
Autism iPSCs for studying function and dysfunction in human neural development	\$254,152	Q4.S.B	The Scripps Research Institute	
Small-molecule compounds for treating autism spectrum disorders	\$175,000	Q4.S.B	The University of North Carolina at Chapel Hill	
Novel, subtype selective potentiators of nicotinic acetycholine receptors	\$325,757	Q4.Other	University of Alaska Fairbanks	
A novel cell-based assay for autism research and drug discovery	\$60,000	Q4.S.B	University of Arizona	
Basal ganglia circuitry and molecules in pathogenesis of motor stereotypy	\$387,767	Q4.S.B	University of California, Los Angeles	
Neurogenomics in a model for procedural learning	\$33,053	Q4.S.B	University of California, Los Angeles	
Cntnap2 in a behavioral model of autism	\$262,356	Q4.S.B	University of California, Los Angeles	
High content screens of neuronal development for autism research	\$210,977	Q4.S.B	University of California, San Diego	
nsight into MeCP2 function raises therapeutic possibilities for Rett syndrome	\$295,298	Q4.S.B	University of California, San Francisco	
Dissecting the neural control of social attachment	\$772,500	Q4.S.B	University of California, San Francisco	
Role of a novel Wnt pathway in autism spectrum disorders	\$750,000	Q4.S.B	University of California, San Francisco	
The genetics of restricted, repetitive behavior: An inbred mouse model	\$60,000	Q4.S.B	University of Florida	
The genetic control of social behavior in the mouse	\$346,000	Q4.S.B	University of Hawai'i at Manoa	
A mouse knock-in model for ENGRAILED 2 autism susceptibility	\$227,135	Q4.S.B	University of Medicine & Dentistry of New Jersey	
Serotonin, corpus callosum, and autism	\$303,250	Q4.S.B	University of Mississippi Medical Center	
NrCAM, a candidate susceptibility gene for visual processing deficits in autism	\$0	Q4.S.B	University of North Carolina at Chapel Hill	
Novel strategies to manipulate Ube3a expression for the reatment of autism and Angelman syndrome	\$0	Q4.S.B	University of North Carolina at Chapel Hill	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$167,572	Q4.S.B	University of North Carolina at Chapel Hill	
Preclinical testing of novel oxytocin receptor activators in nodels of autism phenotypes	\$39,325	Q4.S.B	University of North Carolina at Chapel Hill	

Project Title	Funding	Strategic Plan Objective	Institution
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$346,289	Q4.S.B	University of North Carolina at Chapel Hill
Characterization of a novel mouse model of restricted repetitive behaviors	\$222,000	Q4.S.B	University of North Carolina at Chapel Hill
Neuropharmacology of motivation and reinforcement in mouse models of autistic spectrum disorders	\$0	Q4.S.B	University of North Carolina School of Medicine
Functional genomic dissection of language-related disorders	\$235,753	Q4.S.B	University of Oxford
Neurobiology of sociability in a mouse model system relevant to autism	\$354,375	Q4.S.B	University of Pennsylvania
High-resolution diffusion tensor imaging in mouse models relevant to autism	\$199,724	Q4.S.B	University of Pennsylvania
Behavioral and physiological consequences of disrupted Met signaling	\$800,000	Q4.S.B	University of Southern California
Animal model of speech sound processing in autism	\$325,125	Q4.S.B	University of Texas at Dallas
Identifying impairments in synaptic connectivity in mouse models of ASD	\$40,000	Q4.S.B	University of Texas Southwestern Medical Center
Shank3 mutant characterization in vivo	\$28,000	Q4.S.B	University of Texas Southwestern Medical Center
Animal models of autism: Pathogenesis and treatment	\$84,999	Q4.S.B	University of Texas Southwestern Medical Center
Neuroligin function in vivo: Implications for autism and mental retardation	\$392,500	Q4.S.B	University of Texas Southwestern Medical Center
Novel genetic animal models of autism	\$274,750	Q4.S.B	University of Texas Southwestern Medical Center
Deriving neuroprogenitor cells from peripheral blood of individuals with autism	\$0	Q4.S.B	University of Utah
Evaluation of altered fatty acid metabolism via gas chromatography/mass spectroscopy and time-of-flight secondary ion mass spectroscopy imaging in the propionic acid rat model of autism spectrum disorders	\$25,000	Q4.S.B	University of Western Ontario
Mouse genetic model of a dysregulated serotonin transporter variant associated with autism	\$0	Q4.S.B	Vanderbilt University
Murine genetic models of autism	\$172,389	Q4.S.B	Vanderbilt University
Transgenic mouse model to address heterogeneity in autism spectrum disorders	\$468,586	Q4.S.B	Vanderbilt University
Using zebrafish and chemical screening to define function of autism genes	\$399,999	Q4.S.B	Whitehead Institute for Biomedical Research
Caspr2 dysfunction in autism spectrum disorders	\$0	Q4.S.B	Yale University
Cellular and genetic correlates of increased head size in autism spectrum disorder	\$282,901	Q4.S.B	Yale University
Integrated approach to the neurobiology of autism spectrum disorders	\$232,118	Q4.S.B	Yale University